The CDKN2A G500 Allele Is More Frequent in GBM Patients with No Defined Telomere Maintenance Mechanism Tumors and Is Associated with Poorer Survival
نویسندگان
چکیده
Prognostic markers for glioblastoma multiforme (GBM) are important for patient management. Recent advances have identified prognostic markers for GBMs that use telomerase or the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance. Approximately 40% of GBMs have no defined telomere maintenance mechanism (NDTMM), with a mixed survival for affected individuals. This study examined genetic variants in the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene that encodes the p16(INK4a) and p14(ARF) tumor suppressors, and the isocitrate dehydrogenase 1 (IDH1) gene as potential markers of survival for 40 individuals with NDTMM GBMs (telomerase negative and ALT negative by standard assays), 50 individuals with telomerase, and 17 individuals with ALT positive tumors. The analysis of CDKN2A showed NDTMM GBMs had an increased minor allele frequency for the C500G (rs11515) polymorphism compared to those with telomerase and ALT positive GBMs (p = 0.002). Patients with the G500 allele had reduced survival that was independent of age, extent of surgery, and treatment. In the NDTMM group G500 allele carriers had increased loss of CDKN2A gene dosage compared to C500 homozygotes. An analysis of IDH1 mutations showed the R132H mutation was associated with ALT positive tumors, and was largely absent in NDTMM and telomerase positive tumors. In the ALT positive tumors cohort, IDH1 mutations were associated with a younger age for the affected individual. In conclusion, the G500 CDKN2A allele was associated with NDTMM GBMs from older individuals with poorer survival. Mutations in IDH1 were not associated with NDTMM GBMs, and instead were a marker for ALT positive tumors in younger individuals.
منابع مشابه
Prognosis and Survival Study in Patients with Glioblastoma Multiform and Its Relationship with EGFR Expression
Background and Aim: Glioblastoma multiforme (GBM) is the most common malignant and invasive tumor of the brain. The relation between prognosis and survival of GBM patients with Epidermal Growth Factor Receptor (EGFR) expression is challenging. Thus, we aimed to evaluate the prognosis and survival of patients with GBM and its relationship with EGFR expression. Materials and Methods: This single...
متن کاملRadiothermotherapy for glioblastoma multiforme: A preliminary study
Introduction: Glioblastoma multiforme (GBM) is a highly radioresistant cancer with low survival rate. Current therapy approaches have failed to treat GBM. The aim of this study was to assess how GBM tumors respond to combination of hyperthermia and radiotherapy. Materials and Methods: In this study, 38 GBM patients were included. 19 patients were treated ...
متن کاملP154: Role of Exosomes as Novel Biomarkers in Diagnosis and Prognosis of Glioblastoma
Glioblastoma multiform(GBM) is the most prevalent primary brain tumor. Exosomes are extracellular vehicles for exchanging information between various cell types including cancer and normal cells. Exosomes are indicative of pathophysiological conditions of brain tumors that could be used in diagnosis and prognosis of GBM. In tumors, exosomes could carry various molecules like several miRNAs and ...
متن کاملP157: Periostin Recruits Tumor Associated Macrophages in Glioblastoma Multiform
Glioblastoma multiform (GBM) is the most common and lethal type of primary brain tumors with high rates of morbidity and mortality. Treatment options are limited and ineffective in most of the cases. Epidemiological studies have shown a link between inflammation and glioma genesis. In addition, at the molecular level, pro-inflammatory cytokines released from activated microglia can increa...
متن کاملLoss of tumor suppressive microRNA-31 enhances TRADD/NF-κB signaling in glioblastoma
Glioblastomas (GBMs) are deadly tumors of the central nervous system. Most GBM exhibit homozygous deletions of the CDKN2A and CDKN2B tumor suppressors at 9p21.3, although loss of CDKN2A/B alone is insufficient to drive gliomagenesis. MIR31HG, which encodes microRNA-31 (miR-31), is a novel non-coding tumor suppressor positioned adjacent to CDKN2A/B at 9p21.3. We have determined that miR-31 expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011